Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Eur J Case Rep Intern Med ; 11(2): 004246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352815

RESUMEN

We report the case of a 24-year-old male presenting with obstructive renal failure, characterised by imaging evidence of a cystic lesion contingent upon the seminal vesicle and concurrent renal agenesis. Initial management involved urinary diversion, followed by outpatient monitoring and subsequent recurrence. Subsequent diagnostic assessments led to the identification of Zinner's syndrome, accompanied by retroperitoneal fibrosis. We present the clinical course, diagnostic methodology and the efficacious implementation of medical-surgical therapeutic interventions, yielding favourable outcomes. LEARNING POINTS: The value of the Internal Medicine team in the assessment of low prevalence diseases.The importance of multidisciplinary teams.Integration of the internists in the surgical teams.

2.
Nano Lett ; 24(10): 3021-3027, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38252876

RESUMEN

The effects on the lattice structure and electronic properties of different polymorphs of silver halide, AgX (X = Cl, Br, and I), induced by laser irradiation (LI) and electron irradiation (EI) are investigated using a first-principles approach, based on the electronic temperature (Te) within a two-temperature model (TTM) and by increasing the total number of electrons (Ne), respectively. Ab initio molecular dynamics (AIMD) simulations provide a clear visualization of how Te and Ne induce a structural and electronic transformation process during LI/EI. Our results reveal the diffusion processes of Ag and X ions, the amorphization of the AgX lattices, and a straightforward interpretation of the time evolution for the formation of Ag and X nanoclusters under high values of Te and Ne. Overall, the present work provides fine details of the underlying mechanism of LI/EI and promises to be a powerful toolbox for further cross-scale modeling of other semiconductors.

3.
Cells ; 12(23)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38067112

RESUMEN

Hydrogen sulfide (H2S) was recognized as a gaseous signaling molecule, similar to nitric oxide (-NO) and carbon monoxide (CO). The aim of this review is to provide an overview of the formation of hydrogen sulfide (H2S) in the human body. H2S is synthesized by enzymatic processes involving cysteine and several enzymes, including cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE), cysteine aminotransferase (CAT), 3-mercaptopyruvate sulfurtransferase (3MST) and D-amino acid oxidase (DAO). The physiological and pathological effects of hydrogen sulfide (H2S) on various systems in the human body have led to extensive research efforts to develop appropriate methods to deliver H2S under conditions that mimic physiological settings and respond to various stimuli. These functions span a wide spectrum, ranging from effects on the endocrine system and cellular lifespan to protection of liver and kidney function. The exact physiological and hazardous thresholds of hydrogen sulfide (H2S) in the human body are currently not well understood and need to be researched in depth. This article provides an overview of the physiological significance of H2S in the human body. It highlights the various sources of H2S production in different situations and examines existing techniques for detecting this gas.


Asunto(s)
Sulfuro de Hidrógeno , Animales , Humanos , Cistationina , Gases , Transducción de Señal , Óxido Nítrico , Mamíferos
4.
Molecules ; 28(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836598

RESUMEN

In the present work, the bond breaking/forming events along the intramolecular Diels-Alder (IMDA) reaction of (2E,4Z,6Z)-2(allyloxy)cycloocta-2,4,6-trien-1-one have been revealed within bonding evolution theory (BET) at the density functional theory level, using the M05-2X functional with the cc-pVTZ basis set. Prior to achieving this task, the energy profiles and stationary points at the potential energy surface (PES) have been characterized. The analysis of the results finds that this rearrangement can proceed along three alternative reaction pathways (a-c). Paths a and b involve two steps, while path c is a one-step process. The first step in path b is kinetically favored, and leads to the formation of an intermediate step, Int-b. Further evolution from Int-b leads mainly to 3-b1. However, 2 is the thermodynamically preferred product and is obtained at high temperatures, in agreement with the experimental observations. Regarding the BET analysis along path b, the breaking/forming process is described by four structural stability domains (SSDs) during the first step, which can be summarized as follows: (1) the breaking of the C-O bond with the transfer of its population to the lone pair (V(O)), (2) the reorganization of the electron density with the creation of two V(C) basins, and (3) the formation of a new C-C single bond via the merger of the two previous V(C) basins. Finally, the conversion of Int-b (via TS2-b1) occurs via the reorganization of the electron density during the first stage (the creation of different pseudoradical centers on the carbon atoms as a result of the depopulation of the C-C double bond involved in the formation of new single bonds), while the last stage corresponds to the non-concerted formation of the two new C-C bonds via the disappearance of the population of the four pseudoradical centers formed in the previous stage. On the other hand, along path a, the first step displays three SSDs, associated with the depopulation of the V(C2,C3) and V(C6,C7) basins, the appearance of the new monosynaptic basins V(C2) and V(C7), and finally the merging of these new monosynaptic basins through the creation of the C2-C7 single bond. The second step is described by a series of five SSDs, that account for the reorganization of the electron density within Int-a via the creation of four pseudoradical centers on the C12, C13, C3 and C6 carbon atoms. The last two SSDs deal with the formation of two C-C bonds via the merging of the monosynaptic basins formed in the previous domains.

5.
Dalton Trans ; 52(41): 14982-14994, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37811730

RESUMEN

Here, we present the synthesis of a highly efficient V-doped α-Ag2WO4 catalyst for the oxidation of sulfides to sulfones, exhibiting a high degree of tolerance towards various sensitive functional groups. Remarkably, the catalysts with 0.01% V-doping content exhibited outstanding selectivity towards the oxidation process. Scavenger experiments indicated the direct involvement of electron-hole (e-/h+) pairs, hydroxyl radical (˙OH), and singlet oxygen (1O2) in the catalytic mechanism. Based on the experimental and theoretical results, the higher activity of the V-doped α-Ag2WO4 samples was associated with the preferential formation of the (100) surface in the catalyst morphology.

6.
Chem Biol Interact ; 382: 110646, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506996

RESUMEN

Gold nanoparticles (AuNPs) are a fundamental building block of many applications across nanotechnology as they have excellent biosafety which make them promising for a broad range of biomedical applications. Here we explore their in vivo toxicity, cytotoxicity and proliferative capacity in human keratinocyte HaCaT cells, their ability to induce gene expression and their antiviral properties against a surrogate of SARS-CoV-2. These nanoparticles were characterized by transmission electron microscopy, dynamic light scattering and zeta potential. The results showed that these AuNPs with sizes ranging from 10 to 60 nm are non-toxic in vivo at any concentration up to 800 µg/mL. However, AuNP cytotoxicity in human HaCaT cells is time-dependent, so that concentrations of up to 300 µg/mL did not show any in vitro toxic effect at 3, 12 and 24 h, although higher concentrations were found to have some significant toxic activity, especially at 24 h. No significant proliferative activity was observed when using low AuNP concentrations (10, 20 and 40 µg/mL), while the AuNP antiviral tests indicated low or insignificant antiviral activity. Surprisingly, none of the 13 analyzed genes had their expressions modified after 24 h's exposure to AuNPs. Therefore, the results show that AuNPs are highly stable inactive materials and thus very promising for biomedical and clinical applications demanding this type of materials.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Humanos , Oro/toxicidad , Nanopartículas del Metal/toxicidad , SARS-CoV-2 , Expresión Génica
7.
J Biochem Mol Toxicol ; 37(11): e23455, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37437103

RESUMEN

The influence of modern lifestyle, diet, exposure to chemicals such as phytosanitary substances, together with sedentary lifestyles and lack of exercise play an important role in inducing reactive stress (RS) and disease. The imbalance in the production and scavenging of free radicals and the induction of RS (oxidative, nitrosative, and halogenative) plays an essential role in the etiology of various chronic pathologies, such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. The implication of free radicals and reactive species injury in metabolic disturbances and the onset of many diseases have been accumulating for several decades, and are now accepted as a major cause of many chronic diseases. Exposure to elevated levels of free radicals can cause molecular structural impact on proteins, lipids, and DNA, as well as functional alteration of enzyme homeostasis, leading to aberrations in gene expression. Endogenous depletion of antioxidant enzymes can be mitigated using exogenous antioxidants. The current interest in the use of exogenous antioxidants as adjunctive agents for the treatment of human diseases allows a better understanding of these diseases, facilitating the development of new therapeutic agents with antioxidant activity to improve the treatment of various diseases. Here we examine the role that RS play in the initiation of disease and in the reactivity of free radicals and RS in organic and inorganic cellular components.


Asunto(s)
Antioxidantes , Oxidantes , Humanos , Antioxidantes/farmacología , Oxidantes/farmacología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Radicales Libres/química , Radicales Libres/farmacología , Biomarcadores/metabolismo
8.
Foods ; 12(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37238755

RESUMEN

Phytochemicals from plant extracts are becoming increasingly popular in the world of food science and technology because they have positive effects on human health. In particular, several bioactive foods and dietary supplements are being investigated as potential treatments for chronic COVID. Hydroxytyrosol (HXT) is a natural antioxidant, found in olive oil, with antioxidant anti-inflammatory properties that has been consumed by humans for centuries without reported adverse effects. Its use was approved by the European Food Safety Authority as a protective agent for the cardiovascular system. Similarly, arginine is a natural amino acid with anti-inflammatory properties that can modulate the activity of immune cells, reducing the production of pro-inflammatory cytokines such as IL-6 and TNF-α. The properties of both substances may be particularly beneficial in the context of COVID-19 and long COVID, which are characterised by inflammation and oxidative stress. While l-arginine promotes the formation of •NO, HXT prevents oxidative stress and inflammation in infected cells. This combination could prevent the formation of harmful peroxynitrite, a potent pro-inflammatory substance implicated in pneumonia and COVID-19-associated organ dysfunction, as well as reduce inflammation, improve immune function, protect against free radical damage and prevent blood vessel injury. Further research is needed to fully understand the potential benefits of HXT and arginine in the context of COVID-19.

9.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36985873

RESUMEN

Although the physics and chemistry of materials are driven by exposed surfaces in the morphology, they are fleeting, making them inherently challenging to study experimentally. The rational design of their morphology and delivery in a synthesis process remains complex because of the numerous kinetic parameters that involve the effective shocks of atoms or clusters, which end up leading to the formation of different morphologies. Herein, we combined functional density theory calculations of the surface energies of ZnO and the Wulff construction to develop a simple computational model capable of predicting its available morphologies in an attempt to guide the search for images obtained by field-emission scanning electron microscopy (FE-SEM). The figures in this morphology map agree with the experimental FE-SEM images. The mechanism of this computational model is as follows: when the model is used, a reaction pathway is designed to find a given morphology and the ideal step height in the whole morphology map in the practical experiment. This concept article provides a practical tool to understand, at the atomic level, the routes for the morphological evolution observed in experiments as well as their correlation with changes in the properties of materials based solely on theoretical calculations. The findings presented herein not only explain the occurrence of changes during the synthesis (with targeted reaction characteristics that underpin an essential structure-function relationship) but also offer deep insights into how to enhance the efficiency of other metal-oxide-based materials via matching.

10.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36768162

RESUMEN

Classically, superoxide anion O2•- and reactive oxygen species ROS play a dual role. At the physiological balance level, they are a by-product of O2 reduction, necessary for cell signalling, and at the pathological level they are considered harmful, as they can induce disease and apoptosis, necrosis, ferroptosis, pyroptosis and autophagic cell death. This revision focuses on understanding the main characteristics of the superoxide O2•-, its generation pathways, the biomolecules it oxidizes and how it may contribute to their modification and toxicity. The role of superoxide dismutase, the enzyme responsible for the removal of most of the superoxide produced in living organisms, is studied. At the same time, the toxicity induced by superoxide and derived radicals is beneficial in the oxidative death of microbial pathogens, which are subsequently engulfed by specialized immune cells, such as neutrophils or macrophages, during the activation of innate immunity. Ultimately, this review describes in some depth the chemistry related to O2•- and how it is harnessed by the innate immune system to produce lysis of microbial agents.


Asunto(s)
Superóxido Dismutasa , Superóxidos , Superóxidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Apoptosis , Inmunidad Innata
11.
ACS Appl Mater Interfaces ; 15(5): 6548-6560, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36696256

RESUMEN

The COVID-19 pandemic has emerged as an unprecedented global healthcare emergency, demanding the urgent development of effective materials to inactivate the SARS-CoV-2 virus. This research was planned to disclose the remarkable biocidal activity of SiO2-Ag composites incorporated into low-density polyethylene. For this purpose, a joint experimental and theoretical [based on first-principles calculations at the density functional theory (DFT) level] study is performed. Biological assays showed that this material eliminatesStaphylococcus aureusand SARS-CoV-2 virus in just 2 min. Here, we investigate a previously unexplored process that we postulate may occur along the O2 and H2O adsorption and activation processes of pure and defective SiO2-Ag surfaces for the generation of reactive oxygen species (ROS). The obtained results help us to predict the nature of ROS: superoxide anion radicals, •O2-, hydroxyl radicals, •OH, and hydroperoxyl radicals, •HO2, that destroy and degrade the structure of the SARS-COV-2 virus. This is consistent with the DFT studies, where the energetic, electronic, and magnetic properties of the intermediates show a feasible formation of ROS. Present findings are expected to provide new insights into the relationship among the structure, property, and biocidal activity of semiconductor/metal SiO2-Ag composites.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Dióxido de Silicio/química , Especies Reactivas de Oxígeno , Pandemias , Modelos Teóricos
12.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36555303

RESUMEN

This review examines the role of chlorine dioxide (ClO2) on inorganic compounds and cell biomolecules. As a disinfectant also present in drinking water, ClO2 helps to destroy bacteria, viruses, and some parasites. The Environmental Protection Agency EPA regulates the maximum concentration of chlorine dioxide in drinking water to be no more than 0.8 ppm. In any case, human consumption must be strictly regulated since, given its highly reactive nature, it can react with and oxidize many of the inorganic compounds found in natural waters. Simultaneously, chlorine dioxide reacts with natural organic matter in water, including humic and fulvic acids, forming oxidized organic compounds such as aldehydes and carboxylic acids, and rapidly oxidizes phenolic compounds, amines, amino acids, peptides, and proteins, as well as the nicotinamide adenine dinucleotide NADH, responsible for electron and proton exchange and energy production in all cells. The influence of ClO2 on biomolecules is derived from its interference with redox processes, modifying the electrochemical balances in mitochondrial and cell membranes. This discourages its use on an individual basis and without specialized monitoring by health professionals.


Asunto(s)
Compuestos de Cloro , Desinfectantes , Agua Potable , Purificación del Agua , Humanos , Compuestos de Cloro/química , Óxidos/química , Oxidación-Reducción , Desinfectantes/farmacología , Cloro , Desinfección
13.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430532

RESUMEN

This review examines the impact of reactive species RS (of oxygen ROS, nitrogen RNS and halogens RHS) on various amino acids, analyzed from a reactive point of view of how during these reactions, the molecules are hydroxylated, nitrated, or halogenated such that they can lose their capacity to form part of the proteins or peptides, and can lose their function. The reactions of the RS with several amino acids are described, and an attempt was made to review and explain the chemical mechanisms of the formation of the hydroxylated, nitrated, and halogenated derivatives. One aim of this work is to provide a theoretical analysis of the amino acids and derivatives compounds in the possible positions. Tyrosine, methionine, cysteine, and tryptophan can react with the harmful peroxynitrite or •OH and •NO2 radicals and glycine, serine, alanine, valine, arginine, lysine, tyrosine, histidine, cysteine, methionine, cystine, tryptophan, glutamine and asparagine can react with hypochlorous acid HOCl. These theoretical results may help to explain the loss of function of proteins subjected to these three types of reactive stresses. We hope that this work can help to assess the potential damage that reactive species can cause to free amino acids or the corresponding residues when they are part of peptides and proteins.


Asunto(s)
Aminoácidos , Cisteína , Aminoácidos/metabolismo , Triptófano , Proteínas , Metionina , Tirosina
14.
Nanomaterials (Basel) ; 12(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234445

RESUMEN

Size and morphology control during the synthesis of materials requires a molecular-level understanding of how the addition of surface ligands regulates nucleation and growth. In this work, this control is achieved by using three carboxylic acids (tartaric, benzoic, and citric) during sonochemical syntheses. The presence of carboxylic acids affects the kinetics of the nucleation process, alters the growth rate, and governs the size and morphology. Samples synthesized with citric acid revealed excellent photocatalytic activity for the degradation process of Rhodamine B, and recyclability experiments demonstrate that it retains 91% of its photocatalytic activity after four recycles. Scavenger experiments indicate that both the hydroxyl radical and the hole are key species for the success of the transformation. A reaction pathway is proposed that involves a series of dissolution-hydration-dehydration and precipitation processes, mediated by the complexation of Ag+. We believe these studies contribute to a fundamental understanding of the crystallization process and provide guidance as to how carboxylic acids can influence the synthesis of materials with controlled size and morphology, which is promising for multiple other scientific fields, such as sensor and catalysis fields.

15.
J Phys Chem Lett ; 13(42): 9883-9888, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36252084

RESUMEN

The chemical pressure approach offers a new paradigm for property control in functional materials. In this work, we disclose a correlation between the ß â†’ α pressure-induced phase transition in SnMoO4 and the substitution process of Mo6+ by W6+ in SnMo1-xWxO4 solid solutions (x = 0-1). Special attention is paid to discriminating the role of the lone pair Sn2+ cation from the structural distortive effect along the Mo/W substitution process, which is crucial to disentangle the driven force of the transition phase. Furthermore, the reverse α → ß transition observed at high temperature in SnWO4 is rationalized on the same basis as a negative pressure effect associated with a decreasing of W6+ percentage in the solid solution. This work opens a versatile chemical approach in which the types of interactions along the formation of solid solutions are clearly differentiated and can also be used to tune their properties, providing opportunities for the development of new materials.

16.
Biomater Adv ; 141: 213097, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36067643

RESUMEN

Although Ag-based materials are efficient against antibiotic-resistant bacteria, their high toxicity to living organisms represents a major challenge for obtaining useful products. In this work, we report the bactericidal activity of Ag4V2O7/ß-AgVO3 heterostructures, which proved to be effective against Klebsiella pneumoniae (ATCC 1706, a standard strain; A54970, a multidrug-resistant carbapenemase (KPC)-producing strain; A34057, a multidrug-resistant strain capable of producing extended spectrum beta-lactamases (ESBL); and a community-isolated strain, A58240) at minimum inhibitory concentrations (MIC) as low as 62.5 µg/mL. This activity is higher than that reported for the individual silver vanadates (Ag4V2O7 or ß-AgVO3) owing to the synergistic interactions between both semiconductors. However, the most efficient heterostructure was found to be toxic to mouse 3 T3 fibroblasts and to L. sativa and C. sativus seeds, as indicated by MTT ((4,5 - dimethylthiazol -2yl) 2,5 -diphenylbromide), neutral red assays and germination index measurements. The antimicrobial, phytotoxic and cytotoxic activities were all associated with an efficient generation of reactive oxygen species (ROS) in the heterostructure, especially OH and O2- radicals. The ROS production by Ag4V2O7/ß-AgVO3 heterostructures was measured through photodegradation studies with Rhodamine B. While the bactericidal activity of the heterostructures is promising, especially when compared to Ag-based materials, their use in practical applications will require encapsulation either to avoid leaching or to mitigate their toxicity to humans, animals and plants.


Asunto(s)
Antibacterianos , Klebsiella pneumoniae , Animales , Antibacterianos/farmacología , Humanos , Ratones , Especies Reactivas de Oxígeno/farmacología , Plata/farmacología , Vanadatos/farmacología , beta-Lactamasas/metabolismo
17.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36142511

RESUMEN

In this work, α-Ag2-2xCuxWO4 (0 ≤ x ≤ 0.16) solid solutions with enhanced antibacterial (against methicillin-resistant Staphylococcus aureus) and antifungal (against Candida albicans) activities are reported. A plethora of techniques (X-ray diffraction with Rietveld refinements, inductively coupled plasma atomic emission spectrometry, micro-Raman spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, ultraviolet-visible spectroscopy, photoluminescence emissions, and X-ray photoelectron spectroscopy) were employed to characterize the as-synthetized samples and determine the local coordination geometry of Cu2+ cations at the orthorhombic lattice. To find a correlation between morphology and biocide activity, the experimental results were sustained by first-principles calculations at the density functional theory level to decipher the cluster coordinations and electronic properties of the exposed surfaces. Based on the analysis of the under-coordinated Ag and Cu clusters at the (010) and (101) exposed surfaces, we propose a mechanism to explain the biocide activity of these solid solutions.


Asunto(s)
Desinfectantes , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Desinfectantes/farmacología , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
18.
Nanomaterials (Basel) ; 12(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35893512

RESUMEN

The interest in magnetic nanostructures exhibiting perpendicular magnetic anisotropy and exchange bias (EB) effect has increased in recent years owing to their applications in a new generation of spintronic devices that combine several functionalities. We present a nanofabrication process used to induce a significant out-of-plane component of the magnetic easy axis and EB. In this study, 30 nm thick CoO/Co multilayers were deposited on nanostructured alumina templates with a broad range of pore diameters, 34 nm ≤ Dp ≤ 96 nm, maintaining the hexagonal lattice parameter at 107 nm. Increase of the exchange bias field (HEB) and the coercivity (HC) (12 times and 27 times, respectively) was observed in the nanostructured films compared to the non-patterned film. The marked dependence of HEB and HC with antidot hole diameters pinpoints an in-plane to out-of-plane changeover of the magnetic anisotropy at a nanohole diameter of ∼75 nm. Micromagnetic simulation shows the existence of antiferromagnetic layers that generate an exceptional magnetic configuration around the holes, named as antivortex-state. This configuration induces extra high-energy superdomain walls for edge-to-edge distance >27 nm and high-energy stripe magnetic domains below 27 nm, which could play an important role in the change of the magnetic easy axis towards the perpendicular direction.

19.
Dalton Trans ; 51(30): 11346-11362, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35815575

RESUMEN

A systematic theoretical and experimental study was carried out to find a relationship between photoluminescence emissions and photocatalytic activity of Ag2SeO4 obtained by different synthesis methods (sonochemistry, ultrasonic probe, coprecipitation and microwave assisted hydrothermal synthesis). Experimental characterization techniques (XRD with Rietveld refinement, Raman, FTIR, UV-vis, XPS and photoluminescence spectroscopy) were used to elucidate its structural order at short, medium, and long ranges. Morphological analysis performed by FE-SEM showed distinct morphologies due to the different methods of synthesis. Based on density functional theory (DFT) calculations, it was possible to study in detail the Ag2SeO4 surface properties, including its surface energy, geometry, and electronic structure for the (100), (010), (001), (101), (011), (110), (111), (021), (012) and (121) surfaces. The equilibrium morphology of Ag2SeO4 was predicted as a truncated octahedron with exposed (111), (001), (010) and (011) surfaces. Photoluminescence emissions showed a band covering the visible spectrum, and the Ag2SeO4 obtained by the coprecipitation method presented the most intense band with a maximum in the red region. Photocatalytic results confirmed that Ag2SeO4 synthesized by the sonochemistry method is the best photocatalyst for rhodamine B degradation under UV light irradiation.

20.
Sci Rep ; 12(1): 8118, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581241

RESUMEN

In the current COVID-19 pandemic, the next generation of innovative materials with enhanced anti-SARS-CoV-2 activity is urgently needed to prevent the spread of this virus within the community. Herein, we report the synthesis of chitosan/α-Ag2WO4 composites synthetized by femtosecond laser irradiation. The antimicrobial activity against Escherichia coli, Methicilin-susceptible Staphylococcus aureus (MSSA), and Candida albicans was determined by estimating the minimum inhibitory concentration (MIC) and minimal bactericidal/fungicidal concentration (MBC/MFC). To assess the biocompatibility of chitosan/α-Ag2WO4 composites in a range involving MIC and MBC/MFC on keratinocytes cells (NOK-si), an alamarBlue™ assay and an MTT assay were carried out. The SARS-CoV-2 virucidal effects was analyzed in Vero E6 cells through viral titer quantified in cell culture supernatant by PFU/mL assay. Our results showed a very similar antimicrobial activity of chitosan/α-Ag2WO4 3.3 and 6.6, with the last one demonstrating a slightly better action against MSSA. The chitosan/α-Ag2WO4 9.9 showed a wide range of antimicrobial activity (0.49-31.25 µg/mL). The cytotoxicity outcomes by alamarBlue™ revealed that the concentrations of interest (MIC and MBC/MFC) were considered non-cytotoxic to all composites after 72 h of exposure. The Chitosan/α-Ag2WO4 (CS6.6/α-Ag2WO4) composite reduced the SARS-CoV-2 viral titer quantification up to 80% of the controls. Then, our results suggest that these composites are highly efficient materials to kill bacteria (Escherichia coli, Methicillin-susceptible Staphylococcus aureus, and the yeast strain Candida albicans), in addition to inactivating SARS-CoV-2 by contact, through ROS production.


Asunto(s)
COVID-19 , Quitosano , Infecciones por Escherichia coli , Infecciones Estafilocócicas , Antibacterianos/farmacología , Candida albicans , Quitosano/farmacología , Escherichia coli , Humanos , Rayos Láser , Pruebas de Sensibilidad Microbiana , Pandemias , SARS-CoV-2 , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...